• PurAmino™

PurAmino™

Hypoallergenic amino acid—based formula.

Last Updated: Wednesday, September 30, 2015

Indication: PurAmino is an iron-fortified, hypoallergenic, amino acid-based infant and toddler formula for the dietary management of infants and toddlers with severe cow's milk protein allergy, not effectively managed by an extensively hydrolyzed formula. PurAmino is also indicated for the dietary management of infants and toddlers with multiple food protein allergies. It may also be suitable for conditions requiring an elemental diet such as protein maldigestion, malabsorption, short bowel syndrome, and eosinophilic esophagitis.

Long-Term Usage: PurAmino is designed to provide a sole source of nutrition for infants up to age 6 months and provide a major source of nutrition through 24 months of age, when indicated. Normally, in feeding infants, gradual introduction of solid foods after 4—6 months of age is an important developmental as well as nutritional step. In cases of severe and multiple food allergies or intolerances, PurAmino is sometimes continued as a milk substitute in the diet of children. This and similar supplemental use of PurAmino in the diet beyond 24 months of age may make a significant contribution to maintenance of good nutrition in such patients.

When PurAmino is used as a milk substitute, the total calcium content of the diet should be assessed.

Extended use of PurAmino (or other infant formulas) as a sole source of diet is most appropriately monitored by physicians and nutritionists on a case-by-case basis, with attention to developmental as well as nutritional implications of such a dietary regimen.

  • Product Features
      • Hypoallergenic, iron-fortified
      • Nutritionally complete;
        • Can be sole source of nutrition up to age 6 months
        • Can be major source of nutrition through 24 months
        • Dietary reference intakes include a recommendation for fiber for >12 months of age
      • DHA and ARA, important nutrients also found in breast milk, that promotes brain and eye development1-6
      • 2.8 g protein equivalent/100 Calories
  • Nutrients*
    • (Normal Dilution) Per 100 Calories (5 fl oz) Per 100 grams Powder (500 Cal)
      Protein equivalent, g 2.8 13.9
      Carbohydrate, g 10.6 53
      Water, g 133 1.86
      Fat, g 5.3 26
      Linoleic acid, mg 860 4300
      Linolenic acid, mg 80 400
      DHA, mg 17 85
      ARA, mg 34 169
      (Normal Dilution) Per 100 Calories (5 fl oz) Per 100 grams Powder (500 Cal)
      Vitamins/Other Nutrients
      Vitamin A, IU 300 1490
      Vitamin D, IU 50 250
      Vitamin E, IU 2 9.9
      Vitamin K, mcg 9 45
      Thiamin (Vitamin B1), mcg 80 400
      Riboflavin (Vitamin B2), mcg 90 450
      Vitamin B6, mcg 60 300
      Vitamin B12, mcg 0.3 1.49
      Niacin, mcg 1000 5000
      Folic acid (Folacin), mcg 16 80
      Pantothenic acid, mcg 500 2500
      Biotin, mcg 3 14.9
      Vitamin C (Ascorbic acid), mg 12 60
      Choline, mg 24 119
      Inositol, mg 17 85
      Carnitine, mg 2 9.9
      Taurine, mg 6 30
      (Normal Dilution) Per 100 Calories (5 fl oz) Per 100 grams Powder (500 Cal)
      Minerals
      Calcium, mg 94 470
      Phosphorus, mg 52 260
      Magnesium, mg 11 55
      Iron, mg 1.8 9
      Zinc, mg 1 5
      Manganese, mcg 25 124
      Copper, mcg 75 370
      Iodine, mcg 15 75
      Selenium, mcg 2.8 13.9
      Sodium, mg 47 230
      Potassium, mg 110 550
      Chloride, mg 86 430
      Molybdenum, mcg NA NA
      Chromium, mcg NA NA

      * Product nutrient values and ingredients are subject to change. Please see product label for current information.

      NA = None Added

  • Nutrient Facts
    • Nutrient Density 20 Calories/fl oz
      Protein (% Calories) 11
      Fat (% Calories) 47
      Carbohydrate (% Calories) 42
      Potential Renal Solute Load (mOsm/100 Calories)7 25
      Potential Renal Solute Load (mOsm/100 mL)7 16.9
      Osmolality (mOsm/kg water) 350
      Osmolarity (mOsm/L) 330
      Lactose-Free Suitable for someone with lactose intolerance
      Galactose-Free Yes
  • Product Form
    • PurAmino is available in powder.

    • Item #: 129023
      Description: Powder
      Unit Size: 14.1 oz can (400g)
      Cal./Unit: 1980
      Prod. Yield / Unit (fl oz): 98
      Case: 4 cans per case
      Reimbursement Code: 00087-510480

      HCPCS Code

  • Composition
    • Ingredients: Corn Syrup Solids (49%), Amino Acids (L-aspartic Acid, L-leucine, L-lysine Hydrochloride, L-proline, L-alanine, L-valine, Monosodium Glutamate, L-isoleucine, L-serine, L-threonine, L-tyrosine, L-arginine, L- phenylalanine, Glycine, L-cystine, L-histidine, L-tryptophan, L-methionine) (17%), High Oleic Sunflower Oil (10%), Medium Chain Triglycerides (MCT) oil (9%), Soy Oil (8%), Modified Tapioca Starch (3%), and less than 2%: Mortierella Alpina Oil, Crypthecodinium Cohnii Oil, Choline Chloride, Inositol, Ascorbic Acid, Niacinamide, Calcium Pantothenate, Riboflavin, Thiamin Hydrochloride, Vitamin B6 Hydrochloride, Vitamin D3, Folic Acid, Vitamin K1, Biotin, Taurine, Vitamin E Acetate, L-carnitine, Vitamin A Palmitate, Vitamin B12, Calcium Phosphate, Potassium Citrate, Calcium Citrate, Sodium Citrate, Potassium Chloride, Calcium Hydroxide, Magnesium Phosphate, Ferrous Sulfate, Zinc Sulfate, Cupric Sulfate, Manganese Sulfate, Sodium Iodide, Sodium Selenite.

      A source of arachidonic acid (ARA). A source of docosahexaenoic acid (DHA).

  • Potential Allergens
    • PurAmino contains soy oil. PurAmino is hypoallergenic.

  • Preparation of Feedings
    • The baby's health depends on carefully following these instructions. Proper hygiene, preparation, dilution, use, and storage are important when preparing infant formula. Powdered infant formulas are not sterile and should not be fed to premature infants or infants who might have immune problems, unless directed and supervised by a doctor.

      Discuss with parents whether they need to use cooled, boiled water for mixing and whether they need to boil clean utensils, bottles and nipples in water before use.

      Powder

      1. Wash hands thoroughly with soap and water before preparing formula.

      2. Pour the desired amount of water into the bottle. The amount necessary depends on the desired amount of formula. See following chart.

      3. Mix powder formula with cool water (35°–75°F); it should feel cool on your wrist. If you prefer, you may mix with warm water, but only if you feed or refrigerate the formula immediately. Warm water is about 100°F or body temperature; it should feel neutral (neither warm nor cool) on your wrist.

        Note: Never use hot tap water.

      4. Shake for about 5 seconds.

      Use the following chart for correct amounts of water and powder. Use scoop in can to measure powder. Store DRY scoop in its original can.

      To Make§ Water Powder Weight
      1 fl oz 1 fl oz 1 unpacked level scoop 4.5 g
      2 fl oz 2 fl oz 2 unpacked level scoops 9 g
      4 fl oz 4 fl oz 4 unpacked level scoops 18 g
      8 fl oz 8 fl oz 8 unpacked level scoops 36 g
      1 quart 28.5 fl oz 1 unpacked level household measuring cup plus 2 unpacked level Tbsps 129 g

      § Each scoop adds about 0.1 fl oz to the amount of prepared formula. For example, adding 3 unpacked level scoops of powder to 3 fl oz of water will make about 3.3 fl oz of formula.

      WARNING: Do not use a microwave oven to prepare or warm formula. Serious burns may result.

      Failure to follow these instructions could result in severe harm. Once prepared, infant formula can spoil quickly. Either feed immediately or store in the refrigerator at 35°–40°F (2°–4°C) for no longer than 24 hours. Do not use prepared formula if it is unrefrigerated for more than a total of 2 hours. Do not freeze prepared formula. After feeding begins, use within 1 hour or discard.

      Powder Storage

      Store cans at room temperature. After opening the can, keep it tightly covered, store in a dry area and use the contents within 1 month. Do not freeze powder, and avoid excessive heat. Use by date on the bottom of the can.

      CAUTION

      Nutritional powders are not sterile.

      This product is not recommended for routine use in very low-birth-weight infants. Some of these infants may be at increased risk of developing gastrointestinal complications.

  • Product Characteristics
    • Fat

      The fat content in PurAmino is 47% of total calories. The fat blend consists of approximately:

      • 34.5% high oleic sunflower oil
      • 33% MCT oil
      • 30% Soy oil
      • 2.5% single–cell oil blend of docosahexaenoic acid (DHA) and arachidonic acid (ARA)

      DHA and ARA

      PurAmino has DHA and ARA, two nutrients also found in breast milk that are important building blocks for a baby's brain and eyes 1–6,8–10. The level of DHA and ARA in PurAmino is similar to that found in average worldwide breast milk||,11, as well as levels specified by expert groups12-15.

      || Average level of DHA and ARA in worldwide breast milk is 0.32% ± 0.22% and 0.47% +/- 0.13% (mean ± standard deviation of total fatty acids) based on an analysis of 65 studies of 2,474 women.

      Protein

      Protein provides 11% of total calories in PurAmino. The protein source is an amino acid premix composed of 100% free amino acids in the following amounts:

      Amino Acid Premix

      Amino Acid mg per 100 Calories mg per 100 grams
      Arginine 148 740
      Histidine 73 360
      Isoleucine 190 950
      Leucine 340 1710
      Lysine 220 1110
      Methioine 64 320
      Cysteine 73 360
      Phenlalanine 140 700
      Tyrosine 151 750
      Threonine 171 850
      Trytophan 67 330
      Valine 210 1060
      Alanine 270 1350
      Aspartic Acid 560 2800
      Glutamic Acid 168 830
      Glycine 73 360
      Proline 280 1390
      Serine 171 850

      Ratios ¶ Essential AA:Total AA 61:121 = 0.51:1 Protein Efficiency (PER) (% casein)=116%16

      Carbohydrate

      Carbohydrate provides 42% of total calories in PurAmino and the product is suitable for someone with lactose intolerance. The carbohydrate blend is corn syrup solids and modified tapioca starch. The carbohydrates in PurAmino are readily digested and well tolerated by infants whose ability to digest other carbohydrates, such as lactose and sucrose, is impaired17. The production of corn syrup solids includes filtration and purification procedures that remove protein, the allergenic component of corn. Therefore, carbohydrate source is considered hypoallergenic18.

      Vitamins and Minerals

      PurAmino meets U.S. Food and Drug Administration requirements for vitamins and minerals as mandated by the U.S. Infant Formula Act and the associated Code of Federal Regulations 21 CFR part 10719.

      Calcium and Phosphorus

      PurAmino contains 94 mg calcium/100 Calories and 52 mg phosphorus/100 Calories. The calcium:phosphorus ratio is 1.81:1, which is in the range specified by the Infant Formula Act19.

      Iron

      PurAmino provides 12.2 mg iron/L. The AAP states that infants who are not breastfed should receive iron–fortified formula21.

      Electrolytes—Sodium, Potassium, and Chloride

      The electrolyte levels in PurAmino are within the ranges specified by U.S. Food and Drug Administration regulations as mandated by the Infant Formula Act20. The sodium, potassium, and chloride levels are 47 mg/100 Calories, 110 mg/100 Calories, and 86 mg/100 Calories, respectively.

  • Clinical Experience
    • Cow's milk protein allergy occurs in approximately 2%–3% of infants21. Many healthcare professionals use an extensively hydrolyzed protein formula for the dietary management of symptoms associated with cow's milk protein allergy. However, up to 10% of infants with severe cow's milk or food protein allergies develop specific IgE against extensively hydrolyzed casein or whey protein and may require a special formula made of free amino acids23. Several of the studies using amino acid–based formulas are summarized below.

      Growth

      Milk, in the form of breast milk or infant formula, is a vital source of nutrition during infancy. Elimination of milk from an infant's diet as part of the management of milk protein allergy may, therefore, impact growth and overall nutritional status23. Therefore, it is not surprising that the key criteria for assessing the safety and efficacy of a hydrolyzed formula are weight gain and height increases. In this regard, there are a number of clinical studies demonstrating that amino acid–based formulas can both improve compromised growth in infants and young children with severe cow's milk protein allergy and continue to support their growth when used for a short period or long term23,24–28.

      Safety and Efficacy

      There are several clinical trials demonstrating the safety and efficacy of reduced antigenic dietary products. However, adverse reactions to these cow's milk substitutes may continue to persist in some highly allergic infants. Incidence allergic responses to hydrolyzed formulas, including extensively hydrolyzed formulas, has been reported over the past few years29,30.

      In contrast to the residual allergenicity of partial and extensively hydrolyzed formulas, and their resulting potential to induce allergic manifestations in highly allergic infants, hydrolysates based on free amino acid solutions are designed to contain no intact proteins or peptides22,31. As a result, there is substantial clinical evidence demonstrating the efficacy of amino acid–based formulas in these situations.

      Skin Health and Digestive Health

      In the dietary management of cow's milk protein allergy, benefits in skin health as well as digestive health are often seen. Atopic dermatitis is common in infants with cow's milk allergy. It has been reported that about one third of infants with severe atopic dermatitis have clinical reactivity to food proteins, including cow's milk and soy proteins32. There have been several clinical studies evaluating the efficacy of amino acid-based formulas in improving skin health as a result of continued allergenicity to cow's milk formula and extensively hydrolyzed proteins22,23, 26, 33. The SCORAD (SCORing Atopic Dermatitis) has been shown to decrease as dietary management with an amino acid-based formula is continued26.

      Digestive issues are common in infants with an allergy to cow's milk protein or extensively hydrolyzed protein formulas. Multiple food protein allergies have been implicated as one of the causes of persistent infant distress. It is well known that dietary antigens are capable of provoking gastroduodenal inflammations and hypermotility in hypersensitivity reactions. A number of clinical studies demonstrate the efficacy of amino acid-based formulas for improved GI health in infants and children alergic to cow's milk protein and extensively hydrolyzed protein formulas22, 25, 27, 33, 34, 35, 36.

      Multiple Food Allergies

      Studies suggest that many children who are allergic to cow's milk protein may develop an allergy to a large variety of other foods, such as eggs, wheat, peanuts, soy and even protein hydrolysates. This scenario is typically defined as “multiple intolerances” to dietary proteins in children and may affect 5%--8% of children during the first three years of life25, 28, 33, 36. According to Latcham et al37, "recently there have been increasing reports of multiply-sensitized infants, often despite exclusive breastfeeding.” In the initial studies of Hill et al30, some patients with cow's milk allergy also had adverse reactions to soy milk or casein hydrolysates. Many were also intolerant to other foods (ie, multiple food proteins). A delay in the diagnosis and initiation of appropriate dietary management could sustain and/or worsen these multiple allergies. Clinical studies by Ammar et al25, Hill et al27 and Latcham et al37 add to the growing body of evidence demonstrating the potential benefits of using an amino acid-based formula for the dietary management of infants with multiple food allergies. PurAmino is a proven effective and hypoallergenic formula for patients with severe cow's milk allergy and multiple food allergies, with no allergic reactions or adverse events reported in 100% of infants and children throughout a controlled study38.

      Malabsorption and Maldigestion

      Conditions resulting in maldigestion and malabsorption can be problematic for maintaining or achieving appropriate nutrient status and potentially have additional effects such as gastrointestinal issues, changes in stool patterns, and ultimately impact growth and development. Clinicians may often recommend use of an elemental formula to help promote absorption of essential nutrients. Indeed, studies in infants and children with chronic diarrhea suggest that use of an elemental formula may be beneficial. Antonson and colleagues examined the effects of an amino acid-based formula with MCT oil on 27 infants < 12 months of age with chronic diarrhea, with improvements in growth and gastrointestinal issues reported. 39,40

      Short Bowel Syndrome

      Elemental diets may also be considered for patients with short bowel syndrome. While some cases are congenital, short bowel syndrome is typically a result of intestinal resection, in which parts of the small and/or large intestine are removed due to disease or trauma41. Bowel resection reduces the absorptive surface area of the gut, which can lead to maldigestion and malabsorption. Thus, strategies for improving nutrient digestion and absorption are necessary to promote growth and development. Protein hydrolysate or amino acid-based formulas are often used in the dietary management of infants and children with short bowel syndrome41,42,43. In terms of the lipid requirements, it has been suggested that a mixture of both medium- chain and long-chain triglycerides is needed in patients with short bowel syndrome42,44. Due to the malabsorption that occurs, MCTs are particularly important as they are easily and quickly absorbed; however, long-chain triglycerides are still needed as they are key for stimulating trophic effects in the intestine as well as meeting essential fatty acid requirements41,44.

      Indeed, studies suggest amino acid-based formulas may be beneficial. Using a retrospective chart review of children with short bowel syndrome, Andorsky and colleagues noted that use of an amino-acid based formula was associated with a shorter duration of parenteral nutrition use48. Similarly, Bines and colleagues conducted a small study of infants and children with short bowel syndrome who had a feeding intolerance to hydrolyzed formulas, noting that feeding tolerance improved within 1 month and patients were weaned from parenteral nutrition within 15 months34.

      Eosinophilic Esophagitis

      In addition to the conditions described above, elemental formulas are also commonly used in patients with eosinophilic esophagitis. Dietary recommendations include food eliminations based on allergy testing or use of an amino acid-based elemental formula in infants and children50. Indeed, studies conducted by Liacouras et al (ref 48), Markowitz et al (ref 49), and Kelly et al (ref 50) suggest that elemental formulas improve gastrointestinal issues and esophageal histology in infants and children.

  • References
    • 1. Birch EE, Hoffman DR, Castañeda YS, et al. A randomized controlled trial of long–chain polyunsaturated fatty acid supplementation of formula in term infants after weaning at 6 wk of age. Am J Clin Nutr. 2002;75:570–580.

      2. Hoffman DR, Birch EE, Castañeda YS, et al. Maturation of visual and mental function in 18–month old infants receiving dietary long–chain polyunsaturated fatty acids [abstract]. FASEB J. 2003;17:A727–A728. Abstract 445.1.

      3. Hoffman DR, Birch EE, Castañeda YS, et al. Visual function in breast–fed term infants weaned to formula with or without long–chain polyunsaturates at 4 to 6 months: a randomized clinical trial. J Pediatr. 2003;142:669–677.

      4. Hoffman DR, Birch EE, Birch DG, et al. Impact of early dietary intake and blood lipid composition of long–chain polyunsaturated fatty acids on later visual development. J Pediatr Gastroenterol Nutr. 2000;31:540–553.

      5. Birch EE, Castañeda YS, Wheaton DH, et al. Visual maturation of term infants fed long–chain polyunsaturated fatty acid–supplemented or control formula for 12 mo. Am J Clin Nutr. 2005;81:871–879.

      6. Morale SE, Hoffman DR, Castañeda YS, et al. Duration of long–chain polyunsaturated fatty acids availability in the diet and visual acuity. Early Hum Dev. 2005;81:197–203.

      7. Fomon SJ, Ziegler EE. Renal solute load and potential renal solute load in infancy. J Pediatr. 1999;134:11–14.

      8. Birch EE, Hoffman DR, Uauy RD, et al. Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatr Res. 1998;44:201–209.

      9. Birch EE, Garfield S, Hoffman DR, et al. A randomized controlled trial of early dietary supply of long–chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol. 2000;42:174–181.

      10. Birch EE, Garfield S, Castañeda YS, et al. Visual acuity and cognitive outcomes at 4 years of age in a double–blind, randomized trial of long–chain polyunsaturated fatty acid–supplemented infant formula. Early Hum Dev.2007;83:279–284.

      11. Brenna JT, Varamini B, Jensen RG, et al. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. 2007;85:1457–1464.

      12. The British Nutrition Foundation. Recommendations for intakes of unsaturated fatty acids. In: Unsaturated Fatty Acids: Nutritional and Physiological Significance: The Report of the British Nutrition Foundation's Task Force. London: Chapman & Hall; 1992:152–163.

      13. FAO/WHO Joint Expert Consultation. Lipids in early development. In: Fats and oils in human nutrition. Report of a joint expert consultation. Food and Agriculture Organization of the United Nations and the World Health Organization. FAO Food and Nutr Pap. 1994;57:49–55.

      14. Simopoulos AP, Leaf A, Salem N Jr. Workshop on the essentiality of and recommended dietary intakes for omega–6 and omega–3 fatty acids. J Am Coll Nutr. 1999;18:487–489.

      15. Koletzko B, Agostoni C, Carlson SE, et al. Long chain polyunsaturated fatty acids (LC–PUFA) and perinatal development. Acta Paediatr. 2001;90:460–464.

      16. Data on File, Mead Johnson Nutritionals. May, 1998.

      17. Ziegler EE, Fomon SJ. Methods in infant nutrition research: balance and growth studies. Acta Paediatr Scand Suppl. 1982;299:90–96.

      18. Richardson GG, Leary HL, Halsey JF. Allergenicity of corn–derived carbohydrate ingredients for use in infant formulas [abstract]. Presentation at American College of Allergists 5th International Food Allergy Symposium. October 15–18, 1984.

      19. Nutrient Requirements for Infant Formulas. Code of Federal Regulations 21, C.F.R. 107.100. April 1, 2006.

      20. American Academy of Pediatrics, Committee on Nutrition. Iron fortification of infant formulas. Pediatrics. 1999;104:119–123.

      21. Høst A, Koletzko B, Dreborg S, et al. Dietary products used in infants for treatment and prevention of food allergy. Joint statement of the European Society for Paediatric Allergology and Clinical Immunology (ESPACI) Committee on Hypoallergenic Formulas and the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. Arch Dis Child. 1999;81:80–84.

      22. Rigourd V, Magny JF, Ayachi A, et al. Neonatal allergy to extensively hydrolyzed cow's milk proteins. Rev Fr Allergol Immunol Clin. 2000;40:185–189.

      23. Niggemann B, Schnabel D, Grüters A, et al. Influence of dietary intervention on serum growth factors in infants with atopic dermatitis and cow's milk allergy—a pilot study. Allergo J. 2002;11:48–53.

      24. Isolauri E, Sütas Y, Mäkinen–Kiljunen S, et al. Efficacy and safety of hydrolyzed cow milk and amino acid–derived formulas in infants with cow milk allergy. J Pediatr. 1995;127:550–557.

      25. Ammar F, de Boissieu D, Dupont C. Allergy to protein hydrolysates: concerning 30 cases. Arch Pediatr. 1999;6:837–843.

      26. Kanny G, Moneret–Vautrin DA, Flabbee J, et al. Value of a formula based on amino acids in the treatment of allergy to the proteins of cow's milk and the syndrome of multiple food allergies. Allergie et Immunologie. 2002;34:82–84.

      27. Hill DJ, Heine RG, Cameron DJ, et al. The natural history of intolerance to soy and extensively hydrolyzed formula in infants with multiple food protein intolerance. J Pediatr. 1999;135:118–121.

      28. Sicherer SH, Noone SA, Koerner CB, et al. Hypoallergenicity and efficacy of an amino acid–based formula in children with cow's milk and multiple food hypersensitivities. J Pediatr. 2001;138:688–693.

      29. Rance F, Brondeau V, Abbal M. Use of prick–tests in the screening of immediate allergy to proteine: 16 cases. Allerg Immunol (Paris). 2002;34:71–76.

      30. Kaczmarski M, Wasilewska J, Lasota M. Hypersensitivity to hydrolyzed cow's milk protein formula in infants and young children with atopic eczema/dermatitis syndrome with cow's milk protein allergy. Rocz Akad Med Bialymst. 2005;50:274–278.

      31. Sampson HA, James JM, Bernhisel–Broadbent J. Safety of an amino acid–derived infant formula in children allergic to cow milk. Pediatrics. 1992;90:463–465.

      32. Leung TF, Ma KC, Cheung LT, et al. A randomized, single–blind and crossover study of an amino acid–based milk formula in treating young children with atopic dermatitis. Pediatr Allergy Immunol. 2004;15:558–561.

      33. Hill DJ, Cameron DJ, Francis DE, et al. Challenge confirmation of late–onset reactions to extensively hydrolyzed formulas in infants with multiple food protein intolerance. J Allergy Clin Immunol. 1995;96:386–394.

      34. Bines J, Francis D, Hill D. Reducing parenteral requirement in children with short bowel syndrome: impact of an amino acid–based complete infant formula. J Pediatr Gastroenterol Nutr. 1998;26:123–128.

      35. Vanderhoof JA, Murray ND, Kaufman SS, et al. Intolerance to protein hydrolysate infant formulas: an underrecognized cause of gastrointestinal symptoms in infants. J Pediatr. 1997;131:741–744.

      36. Salvatore S, Vandenplas Y. Gastroesophageal reflux and cow milk allergy: is there a link? Pediatrics. 2002;110:972–984.

      37. Latcham F, Merino F, Lang A, et al. A consistent pattern of minor immunodeficiency and subtle enteropathy in children with multiple food allergy. J Pediatr. 2003;143:39–47.

      38. Burks, W, et al. Hypoallergencity and effects on growth and tolerance of new amino-acid based formula with DHA and ARA. J Pediatr. 2008;153:266–271.

      39. Antonson, D.L., Murray, N.D., Oliva-Hemker, M.M., Mattis, L.E., Tolia, V., Wuerth, A., and Borschel, M.W. (2002). Nutritional management of infants with chronic diarrhea fed a free amino acid-based medical food. J Pediatr Gastrroenterol Nutr 35,443:A110.

      40. Saavedra, J.M., Mattis, L.E., Chao, C., Borschel, M.W., Kerzner, B., and Hummer, K.A. (2000). Use of an amino acid (AA)-based formula for the management of chronic diarrhea in children. Pediatr Res 47, 168A:987.

      41. Vanderhoof, J.A., and Langnas, A.N. (1997). Short-bowel syndrome in children and adults. Gastroenterology 113, 1767-1778.

      42. Abad-Sinden, A., and Sutphen, J. (2003). Nutritional management of pediatric short bowel syndrome. Practical Gastroenterology, 28-48.

      43. Wessel, J.J., and Kocoshis, S.A. (2007). Nutritional management of infants with short bowel syndrome. Semin Perinatol 31, 104-111.

      44. Goulet, O. (1997). Lipid requirements in infants with digestive diseases with references to short bowel syndrome. Eur J Med Res 2, 79-83.

      45. Andorsky, D.J., Lund, D.P., Lillehei, C.W., Jaksic, T., Dicanzio, J., Richardson, D.S., Collier, S.B., Lo, C., and Duggan, C. (2001). Nutritional and other postoperative management of neonates with short bowel syndrome correlates with clinical outcomes. J Pediatr 139, 27-33.

      46. Furuta, G.T., Liacouras, C.A., Collins, M.H., Gupta, S.K., Justinich, C., Putnam, P.E., Bonis, P., Hassall, E., Straumann, A., and Rothenberg, M.E. (2007). Eosinophilic esophagitis in children and adults: a systematic review and consensus recommendations for diagnosis and treatment. Gastroenterology 133, 1342-1363.

      47. Liacouras, C.A., Spergel, J.M., Ruchelli, E., Verma, R., Mascarenhas, M., Semeao, E., Flick, J., Kelly, J., Brown-Whitehorn, T., Mamula, P., et al. (2005). Eosinophilic esophagitis: a 10-year experience in 381 children. Clin Gastroenterol Hepatol 3, 1198-1206.

      48. Markowitz, J.E., Spergel, J.M., Ruchelli, E., and Liacouras, C.A. (2003). Elemental diet is an effective treatment for eosinophilic esophagitis in children and adolescents. Am J Gastroenterol 98, 777-782.

      49 Kelly, K.J., Lazenby, A.J., Rowe, P.C., Yardley, J.H., Perman, J.A., and Sampson, H.A. (1995). Eosinophilic esophagitis attributed to gastroesophageal reflux: improvement with an amino acid-based formula. Gastroenterology 109, 1503-1512.

  • Retail Listing
    • PurAmino is not available on store shelves, but can be ordered by speaking directly with a pharmacist at your local pharmacy or a pharmacist at one of the following store chains::
      CVS Walgreen's

      It is possible that a specific store in one of these chains may not accept Women, Infants and Children vouchers.

      For your convenience, you can go shop online or find a retail store in your area to purchase this product.

      If you have a question or want to purchase Ready to Use Nursette® bottles (Women, Infants and Children vouchers cannot be accepted for these purchases), you can call 1-800-BABY123.

      *No endorsement of any brand or product by the USDA is implied or intended.

  • Insurance Reimbursement Request for PurAmino

    Insurance companies are not required to cover medical foods, but some do. This letter establishes a medical need for the product and might help get your patients' insurance company to reimburse them for the product.