Pediatric Bone Health

Catherine M. Gordon, MD, MSc
Divisions of Adolescent Medicine and Endocrinology
Director, Children’s Hospital Bone Health Program
Children’s Hospital Boston
Disclaimers

- Statements and opinions expressed are those of the author and not necessarily those of the American Academy of Pediatrics.

- Mead Johnson sponsors programs such as this to give healthcare professionals access to scientific and educational information provided by experts. The presenter has complete and independent control over the planning and content of the presentation, and is not receiving any compensation from Mead Johnson for this presentation. The presenter’s comments and opinions are not necessarily those of Mead Johnson. In the event that the presentation contains statements about uses of drugs that are not within the drugs' approved indications, Mead Johnson does not promote the use of any drug for indications outside the FDA-approved product label.
Objectives

- To identify risk factors for a low bone density among children and adolescents
- To review the effects of vitamin D on different tissues and factors associated with vitamin D deficiency
- To consider strategies to optimize vitamin D status and bone health in a pediatric practice
Osteoporosis

- preventable disease
- no cure
- new interest in childhood and adolescence as critical years for bone acquisition
Peak bone mass: accrued during adolescence
Determinants of Bone Mass

Extrinsic
- Diet
- Body mass/habitus
- Hormonal milieu
- Illnesses
- Exercise
- Lifestyle choices

Intrinsic
- Gender
- Family History
- Ethnicity
Promoting healthy bones – and identifying ones “at risk”!
Gender and Race

- Males:
 - higher bone mass at all ages
 - higher peak bone mass
 - slower decline of sex steroids

- Osteoporosis/Fractures:
 - lower among African Americans (higher peak bone mass in both males and females)
Genetic Factors

- Striking patterns within families
- Premenopausal daughters of postmenopausal women with osteoporosis: lower BMD
- Candidate genes:
 - Vitamin D receptor
 - Estrogen receptor
 - IGF-I receptor
 - TGF-β
 - Alleles involved in collagen synthesis
At-Risk Children and Adolescents

- Obesity
- Poor diet/little sun exposure
- Anorexia nervosa/chronic amenorrhea/delayed puberty
- Turner syndrome
- Growth hormone deficiency
- Medications: glucocorticoids, anticonvulsants, depot medroxyprogesterone, GnRH agonists
- Gastrointestinal disease (IBD)
- Cerebral palsy/neuromuscular diseases

- Rheumatologic diseases: SLE, JRA, dermatomyositis
- Cystic fibrosis
- Celiac disease
- Renal failure
- Diabetes mellitus
- Hemoglobinopathies (sickle cell, thalassemia) + hemophilia
- Immobilized patients
- HIV
- Hyperprolactinemia
Organ Transplant Recipients

- All transplant recipients at increased risk for osteoporosis
 - kidney, liver, heart, bone marrow
- Mechanisms of injury (to bone):
 - Poor nutrition
 - Low body weight and weight loss
 - Chemotherapy
 - Irradiation
 - Immunosuppressive agents
Calcium

- Optimal calcium intake:
 - maximize and maintain peak bone mass
- Requirements increase during periods of rapid growth
- Supplemental intake appears to improve BMD in children and adults
- Area of controversy!
 - *Pediatrics* 2005;155:736-743
Vitamin D

- Critical for normal calcium absorption from diet
- Risk factors for deficiency:
 - Inadequate diet
 - Inadequate sunlight
 - Adolescent lifestyle, including the above!
 - Obesity
 - Anticonvulsant therapy
 - Malabsorption
- RDA = 600 IU (AAP recommendation = 400 IU)
Vitamin D Metabolism

- Sunlight
- Skin
- 7-Dehydrocholesterol
- Cholecalciferol (vitamin D₃)
- Liver
- 25-hydroxyvitamin D₃
- Kidney
- 1,25-dihydroxyvitamin D₃

Dietary intake:
- Vitamin D₃ (fish, meat)
- Vitamin D₂ (supplements)

Maintains calcium balance in the body
Vitamin D: Who’s Who?

- Vitamin D2 = ergocalciferol
- Vitamin D3 = cholecalciferol
- 25(OH)D = calcidiol
 - Relatively inactive, very stable
 - Reflects vitamin D status, low in vitamin D deficiency, longer half-life than other metabolites
 - The one to measure!
- 1,25(OH)D = calcitriol
 - ‘active’ metabolite, highest affinity + activity at nuclear VDR, short half-life
 - Concentrations 1000-fold < 25(OH)D
Sunlight and Vitamin D

- **Melanin**: absorbs UVB radiation + competes with 7-dehydrocholesterol for photons in skin of darkly pigmented individuals
- **SPF8**: reduces vitamin D₃ production by 97.5%
- **Latitude**: Skin unable to produce any vitamin D₃ at all in Boston: Nov-February (*JCEM* 1988;67:373-378)
- **Individuals in extreme latitudes** (northern or southern) may require supplementation (*JCEM* 1999;84:1839-1843; *J Bone Miner Res* 1993;20:99-108)
Should children and adolescents be supplemented with Vitamin D?

- 200 IU, 400 IU, 600 IU or 1000 IU daily?
- Vitamin D2 or D3?

Prevention of Rickets and Vitamin D Deficiency in Infants, Children, and Adolescents

Carol L. Wagner, MD, Frank R. Greer, MD, and the Section on Breastfeeding and Committee on Nutrition

Pediatrics 122:1142, 2008
Dietary Sources of Vitamin D

- D3 in fatty fishes and fish (cod) liver oils
- Fortified milk and juice has approx 100 IU/8 oz.
- Survey of vitamin D content of milk samples in U.S. found:
 - approximately 15% had no detectable vitamin D and >50% had <80% of vitamin D content stated on label (Chen et al. *NEJM* 1993)
Prevalence of Vitamin D Deficiency among Healthy Adolescents in Boston (n=307)

- Higher prevalence
 - Winter vs summer
 - Black vs white adolescents

- Vitamin D deficiency (25OHD < 15 ng/mL)
 - 75/307 = 24%

- Vitamin D insufficiency (25OHD < 20 ng/mL)
 - 124/307 = 42%

Gordon et al., Arch Ped Adol Med 2004
Rickets is back! 1915 versus 2011
Subclinical Vitamin D Deficiency in Healthy Infants and Toddlers

- 12% healthy 8-24 month old’s (<20 ng/mL)
- 40% suboptimal (< 30 ng/mL)
- Did not vary by season or race/ethnicity
- Significant predictors
 - Breastfeeding without supplementation
 - Lack of milk consumption
- Demineralization (33%) on x-rays
Prevalence in Children with Chronic Disease

- **Inflammatory bowel disease**
 - *Pediatrics* 2006;118(5):1950
- **Cystic fibrosis**
- **Seizure disorders**
 - Anticonvulsants, ketogenic diet
- **Anorexia nervosa**
 - More compliant with calcium + vitamin D; low prevalence
 - Low body fat; more bioavailable?
How do we define “deficiency”?

- Or is it “insufficiency”?
- And what about “optimal levels”?
- 11, 12 or 15 ng/mL = deficiency
 - Expressed as nmol/L 27.5, 30, or 37.5
- 21-30 ng/mL = insufficiency
- > 30-32 ng/mL = optimal
- Accepted definition (deficiency)
 - 25(OH)D₃ < 20 ng/mL
 - Recommended threshold of IOM
How much is enough?
Guidelines for Vitamin D Intake

<table>
<thead>
<tr>
<th>Age</th>
<th>RDA (recommended daily allowance)</th>
<th>Safe upper limit**</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1 yr</td>
<td>400 IU</td>
<td>1000 - 1500 IU</td>
</tr>
<tr>
<td>1 – 3 yr</td>
<td>600 IU</td>
<td>2500 IU</td>
</tr>
<tr>
<td>4 - 70 yr</td>
<td>600 IU</td>
<td>4000 IU</td>
</tr>
</tbody>
</table>

Institute of Medicine 2010
Estimates of optimal vitamin D status

Bess Dawson-Hughes · Robert P. Heaney
Michael F. Holick · Paul Lips · Pierre J. Meunier
Reinhold Vieth

- RE: fracture prevention in adults, for 5/6 authors, the minimum desirable 25(OH)D clusters between 70 and 80 nmol/l (28-32 ng/mL)
- Considering all health endpoints (BMD, risk falls, fracture, colon cancer), 75-100 nmol/L (30-40 ng/mL) optimal
Biomarkers for Vitamin D Sufficiency

- 25(OH)D
- PTH
- Bone mineral density (BMD)
- Fracture + falls
- Intestinal calcium absorption
- Blood pressure
- Dental health
- Insulin sensitivity
- Beta cell function
- Immune function
- Respiratory disease, wheezing, TB
Extraskeletal Role for Vitamin D?

- People living closer to the equator are at decreased risk of developing MS
- Similar trends: cancer, hypertension, SAD
Work-up for Vitamin D Insufficiency

- Serum 25(OH)D
- PTH
- Calcium
- Magnesium
- Phosphorus
- Alkaline phosphatase (total)
- Urine calcium/creatinine ratio
 - Start with spot sample
 - If abnormal, 24-hour sample
Rickets in an 18 month old
(before and after treatment)
Treatment of Vitamin D Deficiency

- **Vitamin D2 or D3:** 2000-5000 IU/D or 50,000 IU once weekly
 - provide calcium supps to prevent “hungry bone”
- **Malabsorption**
 - Larger doses of vitamin D: 10,000-25,000 IU/d
- **Anticonvulsant therapy**
 - vitamin D - 800 - 2000 IU/d

- **Impaired production of vitamin D:** calcitriol
 - Liver disease: 25(OH)D or 1,25(OH)₂D
 - 1α-hydroxylase deficiency: 1,25(OH)₂D

- **Hereditary 1,25(OH)₂D resistant rickets** - large doses of vitamin D – treatment is not very effective
How Much is Too Much?
Vitamin D Intoxication

- Intoxication: Case series of 8 children with high vitamin D levels (731 +/- 434 nmol/L)
- Symptoms hypercalcemia or hypercalciuria
- All 8 drank milk from same local dairy
- Milk at local dairy had vitamin D concentration ranging from undetectable to 245,840 IU/L
- Intoxication only seen at total daily doses of 10,000 IU or greater

Jacobus et al. NEJM 1992
Body Weight and Weight-Bearing

- Positive correlation between body weight and BMD
- Low body weight (from many conditions)
 - independent risk factor for fracture
- Weight-bearing exercise may have positive effect on bone size and mineralization
 - In vitro: osteoblasts respond positively to strain
Female Athlete Triad
Weight Loss
Amenorrhea
Bone Loss

How do we prevent stress fractures in this young group?
- hormonal factors
- training factors
- nutrition
- family history*
Remember: growth, puberty, and bone accrual go hand in hand!
Measurement of Skeletal Status – 2011

Bone density
- Dual energy x-ray absorptiometry (DXA) – 2D
- Quantitative ultrasound (QUS)
- Quantitative CT – 3D (including pQCT)
 - High-resolution pQCT (XtremeCT)
- Peripheral vs. axial (central) measurements

Bone quality
- High-resolution MRI
- Micro-CT (from biopsy specimens)
- Hip structural analysis (bone geometry)
- Fracture rates
DXA Terminology: Consider Different Regions of Skeleton

- Central skeleton (axial skeleton plus hips and shoulders):
 - Spine, ribs, pelvis, hips, shoulders

- Peripheral skeleton (appendicular skeleton minus hips and shoulders):
 - Extremities (arms and legs)
DXA scanner – open configuration
DXA Results: rate-of-change curve
Definition of “osteoporosis” in children

- No WHO definitions in children and teens
- Concern for low bone mass
 - BMD Z-score by DXA ≤ -2.0 SD
 - Slightly low if Z-score between -1.0 and -2.0
- “Diagnosis of osteoporosis in children and adolescents should NOT be made on the basis of BMD alone.”

- Int’l Soc Clinical Densitometry 2007
Radial and Tibial Measurements

Peripheral QCT

Quantitative Ultrasound
Peripheral quantitative computed tomography of radius and tibia

Tibia

Radius
Bone Turnover Cycle – hormonal balance enables appropriate activity of osteoblasts vs osteoclasts

Bone Resorption
- Estrogen
- PTH
- Cortisol

Bone Formation
- GH
- IGF-1
- DHEA
- Androgens
What can we do as health care providers?

- Rule out systemic disease, endocrinopathy ⇒ bone loss
- Amenorrhea in young woman ⇒ be concerned!
- Consider BMD measurement in *at risk* patients and ones with strong family history
 - Recall role of genetics in BMD determination
- Encourage:
 - Regular exercise
 - Maintenance of normal weight
 - Good nutrition, with adequate calcium and vitamin D
 - Wean of glucocorticoids as primary disease allows
Diagnostic Work-Up

- Rule-out systemic disease
- Consider insidious celiac disease
- 25-hydroxyvitamin D
- PTH
- Calcium, phosphorus, magnesium

- Other:
 - Ceruloplasmin, copper, IGF-I, DHEAS
- Bone age
- Urinary calcium/creatinine (spot/24 h)
- If amenorrhea: thyroid function, FSH, prolactin
When should you order DXA scans?

- Patients with multiple fractures
- Pathologic (atraumatic fractures)
- Diseases associated with skeletal deficiency states
- Hypothalamic amenorrhea: after 6 months of amenorrhea
- Be suspicious of low BMD if strong family history
- Repeat scans only annually (except as part of research protocol)
US Office of Women’s Health Campaign: Best Bones Forever

www.bestbonesforever.gov for girls

www.bestbonesforever.gov/parents for parents and partners
Clinical Report—Bone Densitometry in Children and Adolescents

Laura K. Bachrach, MD, Irene N. Sills, MD, and THE SECTION ON ENDOCRINOLOGY
Thank you!

Questions/Comments?